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In previous studies, the method originally proposed by Dat and Meurzec for curve-"tting
a modal model to frequency response functions has been demonstrated to be an extremely
interesting means of analyzing data measured from structures which exhibit close modes
and/or high level of damping i.e., high modal coupling. The aim of the research described in
this article was to develop this technique in order to deal with multi-input multi-output
systems, usually encountered in vibration testing, and to improve the numerical
conditioning of the method by introducing orthogonal polynomials. Two practical
applications using experimental data measured during vibration tests on cars are described
in order to demonstrate the properties of this improved version and, when appropriate,
occasional comparisons with other more conventional curve-"tting techniques are included.
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1. INTRODUCTION

The signi"cant advances in measurement instrumentation seen in recent years have helped
contribute to the increase in experimental testing of structural systems in both academic
research laboratories and in industry. Experimental tests to characterize the dynamic
behaviour of structures and components are commonly required during the design and
development phase of a product, and increasingly in-service monitoring during its lifetime is
also being requested. Often the aim is to use the accurate information obtained during
characterization tests to predict the dynamic behaviour of the system in speci"c operating
conditions.

In the "eld of structural dynamics in mechanical systems, widespread use is made of
modal testing, an experimental technique for evaluating the modal properties (natural
frequencies and mode shapes) based on the assumption that the dynamic behaviour of the
structure under test is nominally linear. By using a range of curve-"tting techniques
available in commercial software packages, the measured frequency response functions
(FRFs) can be processed in order to obtain a reduced order, mathematical modal model
that represents the dynamic characteristics of the structure over the "nite bandwidth of the
test data.

Although several alternatives for curve-"tting measured FRFs are often available to the
experimental analyst, in practice each of the commonly available techniques, irrespective of
0022-460X/01/010041#16 $35.00/0 ( 2001 Academic Press
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whether the estimation process uses data in the time or frequency domain, su!ers
drawbacks when the structure exhibits a high degree of modal coupling, i.e., in the presence
of high damping and close modes.

In general, it has been demonstrated that frequency domain methods tend to perform
better than time domain methods in estimating modal properties of systems with high
modal coupling [1] since the broad resonance peaks in the FRFs, characteristic of highly
damped structures, correspond to impulse response functions with e!ectively short
duration in time. (A survey of the various multivariable frequency domain estimators is
given in reference [2].)

One of the most challenging applications for modal curve-"tting is the analysis of data
acquired during aircraft #ight #utter test sessions since the measured signals are generally
subject to high noise levels and the aircraft structure usually has high modal coupling. For
these reasons the Dat and Meurzec smoothing technique [3], a technique developed for this
application and employed successfully by Italian aeronautical companies [4, 5], was
considered to be particularly interesting for extension to other structural systems.

In references [6, 7] the rational fraction polynomial (RFP) [8] method, based on the
least-squares method (LSM) and analyzing frequency domain data, was shown to yield
imprecise results for noisy data and/or high modal coupling. The LSM does not lead to the
minimization of the true error particularly in the region of the natural frequencies; in
general, the error tends to be higher at low frequencies and lower at high frequencies, the
so-called localization and imbalance e!ects. This is the main reason why a poor "t is
obtained when LSM-based system identi"cation techniques are applied. After analyzing the
reasons for biased estimates, an improved version of RFP (called IRFP) was formulated
which leads to the minimization of the true "tting error by using a non-linear procedure [6].

Through the research which is documented in this article, it was demonstrated that
the smoothing technique minimizes the true error "tting. At the outset of the project it
was found that, as formulated by Dat and Meurzec, the original smoothing technique
was applicable only for single-input single-output (SISO) systems [3]. However, in order
to obtain a more complete description of the dynamic characteristics of the structure
under test, it is usual to use many measurement transducers (e.g., accelerometers)
distributed over the structure in order to permit interpretation of the resulting mode shapes
and apply excitation at more than one point and in more than one direction; as
a consequence, the need arises for techniques that can analyze multi-input multi-output
(MIMO) systems.

Preliminary results on the extension of the smoothing technique have been presented
previously [5, 9]; initially, the original method proposed by Dat and Meurzec was extended
to deal with MIMO systems, even though currently it is only possible to provide an
estimation of the poles from the MIMO FRFs [5]. The aspect of the robustness of the
method for analyzing data with high damping was addressed subsequently [9].
Nevertheless, the "rst implementation of this method su!ered from numerical conditioning
problems during matrix inversions, and subsequently it has been discovered that this
problem can be avoided by using routines in Matlab [10], although when large data sets
need to be analyzed, as results for example from tests on a car, this does not represent
a feasible solution and the aspect of numerical conditioning remains pertinent.

This paper describes recent developments made to improve and extend the original
smoothing technique: di!erent ways for solving the numerical conditioning problems
arising from the high order polynomials can be considered [11], resulting in the selection of
Forsythe's orthogonal polynomials [12], which were originally used for system
identi"cation in the orthogonal polynomial method proposed by Van der Auweraer and
Leuridan [13]. To demonstrate the robustness of this new method, called global smoothing
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technique in this work, with respect to high modal coupling, two examples related to
automotive engineering complete the article.

2. FORMULATION OF THE TECHNIQUE WITH ORTHOGONAL POLYNOMIALS

2.1. BASIS OF THE METHOD

By using a common denominator parametrization [2], it is possible to formulate an
expression for each FRF of a set of M"N
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where g has di!erent values according to the type of measured FRF: g"2 for receptance,
g"1 for mobility and g"0 for inertance. (In some cases g can assume even negative values
in order to compensate for out-of-band modes.) In addition, n
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Multiplying both sides of equation (3) by Q(s)D(s), where D(s) is a weighting function to be
selected following the criteria to be described subsequently, one obtains
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The left-hand side of expression (4) is the error which is minimized by applying the
procedure originally proposed by Dat and Meurzec [3]; expression (4) can be rewritten as
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Accordingly, it is possible to introduce an error function given by
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upon remembering that all FRFs have been measured at discrete values of the independent
variable: s

k
"ju

k
with k31,2, n
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k
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As previously stated, the error given by equation (5) can be computed when the weighting
function D(s) is known. Dat and Meurzec [3] proposed the weighting function

D(s)"DQ(s) D~1, (7)

justifying the selection on the grounds that &&close to the poles, where Q(s) is very low, the
function D(s) must assume a high value such that the term D(s)Q(s)H(i)

m
(s) has the same

magnitude in all the bandwidth''.
According to equations (4) and (5), it is clear that by using the former expression for D(s)

the error minimized by the original smoothing technique is
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Expression (8) highlights the most important property of this technique: by selecting
D(s)"DQ(s) D~1, the true error can be minimized resulting in a curve-"tted function which
approximates closely to the measured FRFs even if the system under test is characterized by
high modal coupling. In section 3, this property is demonstrated by using experimental
results.

2.2. USE OF MATRIX FORMULATION

As stated in equation (1), the polynomials P(i)(s) and Q(s) depend on the coe$cients
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These represent the elements of matrices [;] and [<(i)] respectively.
By introducing these magnitudes into equation (5), and evaluating the error e(i)(s) at each

measurement frequency u
k
, the resulting quantities can be incorporated into a vector Me(i)N

to yield the expression
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In order to reduce the approximation error, the error function de"ned in equation (6) can be
used by calculating the summation value across the bandwidth of interest:

J(i)(Mh(i)N)"Me(i)NHMe(i)+N. (12)

Here the superscript H denotes the complex conjugate transposition. By introducing
expression (11) into equation (12), the error function can be expressed as
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The error function J(i)(Mh(i)N) can be evaluated for each measured FRF; the simplest way
to take into account all the measured FRFs is to introduce a total error J(MHN) de"ned as
the sum of all error functions J(i)(Mh(i)N):
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2.3. USE OF ORTHOGONAL POLYNOMIALS

In references [5, 9] it was demonstrated that the extension of the original smoothing
technique to MIMO systems involves the inversion of matrices [¸

1
] and [¸

t
]. In certain
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situations, this inversion is ill-conditioned giving rise to imprecise estimates for the
coe$cients a(i)

r
and b

r
and, as a consequence, to poor-quality FRF curve-"ts and inaccurate

estimates of the poles. Thus, Forsythe's orthogonal polynomials are proposed for
expressing both p
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where d
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is Kronecker's delta function. When both the interval of calculation I
s
and the

weighting function=(s) are known, the evaluation of the polynomials can be performed by
using the approach described in reference [12].
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where the superscript * denotes complex conjugation. From the comparison of equation
(20) with the "rst of equations (19) after transforming integrals into summations, it is clear
that the weighting function related to polynomial p
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It is interesting to observe that even if the aim of this technique is to curve-"t M FRFs, the
introduction of orthogonal polynomials requires the evaluation of just two weighting
functions which hold for each measured FRF.

As a result of introducing these orthogonal polynomials, the expression for matrix [K]
can be simpli"ed to
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demonstrating that all the matrices along the principal diagonal of matrix [K] are now
transformed into the identity matrix, while all the other matrices [¸

1i
] are de"ned

according to equation (14).
By examining expression (17), it is evident that the minimum value for the total error

function J (MHN) corresponds to a null vector MHN. Therefore, in order to obtain a non-zero
solution, a constraint must be introduced:

c(MHN)"MHNT[R]MHN!1"0, (24)

where the value for matrix [R] is speci"ed subsequently.
The minimization of function J (MHN) constrained by condition (24) can be performed by

using Lagrange's multipliers [15], i.e., solving the system of equations
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with
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A non-zero solution of equation (28) can be obtained by evaluating the eigenvalues of the
matrix [G]; the maximum eigenvalue is that one for which the total error J (MHN) is
minimum, such that the corresponding eigenvector provides the estimate for coe$cients b

r
,

while all the coe$cients a(i)
r

can be evaluated through equation (26).
Natural frequencies and corresponding damping ratios can be extracted from the roots of

the denominator, i.e., the poles of the analyzed system, by recalling that "rstly the
polynomial has real coe$cients such that it has n
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Clearly, D(s) can be set according to relation (7) only when a "rst estimate for the
denominator Q(s) is available. As a consequence, as mentioned in references [3, 5, 9] it has
been suggested to start with an estimate obtained with a rational fraction polynomial for
D(s) and continue by introducing into D(s) the last estimate for DQ(s) D~1. This iterative
procedure concludes when the error in the curve-"tting ceases to decrease.

3. APPLICATION TO EXPERIMENTAL DATA

3.1. ENGINE VIBRATION TESTING DATA

The aim of this case study is to demonstrate the potential of the global smoothing
technique (GST) described in the previous section and illustrate in a comparison that this
new technique may o!er certain advantages over other more conventional alternatives such
as the rational fraction polynomial (RFP) Method (although a detailed comparison analysis
is beyond the scope of this study).

The data used in this case study were measured during a stepped-sine test on a normal
production vehicle, using a &&4-poster'' road simulator, exciting the forward left wheel at the
tyre patch and in the vertical direction and measuring the vibrational response at di!erent
points on the engine. By using the acceleration at the hub of the excited wheel as the
reference signal, and measuring the acceleration response on the engine in correspondence
with engine mount attachments, it was possible to measure a set of transmissibility
functions which represent a useful indicator of the global dynamics of the vehicle in the
lower frequency range. (The layout of the excitation point and of measuring locations is
illustrated in Figure 1.)



Figure 1. Excitation and measurement points on the engine.

Figure 2. Transmissibility between y
1
(t) and x (t) (#: experimental data, * GST, } ) } RFP).
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Figures 2}4 illustrate results of curve-"tting the transmissibility functions using GST and
RFP and Table 1 shows the modal parameters determined by the two methods; the pole
estimates for the latter method have been obtained by applying the stabilization diagram
procedure. As can be observed, the accuracy of the "tting obtained with GST is better than
that of RFP in particular in the region of the resonance at about 5 Hz, mainly due to
underestimation of the damping ratio of this mode and overestimation of the damping ratio
of the following mode by RFP. Both the methods indicate that four modes are present in the
frequency range of interest, although with GST a dominant mode at 3)5 Hz is exhibited
which certainly in#uences the transmissibility curve towards the lower end of the frequency



Figure 3. Transmissibility between y
2
(t) and x (t) (#: experimental data, * GST, } ) } RFP).
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interval considered. As can be observed and as occurred by using the IRFP proposed in
reference [6], the number of modes necessary to obtain a good curve-"t using the GST is
equal to the number of modes e!ectively present in the frequency band of interest. Therefore
it is not necessary to specify a higher number of modes than necessary, in contrast to that
which is usually required when applying RPF using the stabilization diagram.

In Figure 5 a comparison between the true error "tting relative to the two techniques is
shown. In this "gure a cumulative transmissibility is plotted, obtained as the summation of
absolute values of the three transmissibilities, to facilitate the identi"cation of the system
resonances. In addition, the true error "tting relative to both RFP (dashed line) and GST
(dash}dot line) is shown. It is clear that the RFP error is higher close to the dominant
system resonances, which is the localization error described in reference [6], and its peak
value is higher than the corresponding one of GST. Moreover, the error obtained by
applying GST is almost constant over the entire frequency range.

3.2. FULL-TRIMMED CAR BODY

The main aim of this second example is to illustrate the e!ectiveness of GST for
curve-"tting FRFs measured from structural systems with high modal coupling.

The FRFs to be analyzed were measured during vibration testing of a full-trimmed car
body, which was suspended on elastic cords in order to create nominally free}free



Figure 4. Transmissibility between y
3
(t) and x (t) (#: experimental data, * GST, } ) } RFP).

TABLE 1

Modal parameters determined by GS¹ and RFP

GST RFP

f
1

(Hz) 5)14 5)22
f
1

8)22% 4)16%

f
2

(Hz) 6)27 6)41
f
2

6)07% 12)81%

f
3

(Hz) 9)13 9)17
f
3

9)46% 9)46%

f
4

(Hz) 12)29 12)46
f
4

6)08% 4)65%
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conditions. The car-body was excited by using electrodynamic shakers at four points in
correspondence with the points of attachment of the vehicle suspension systems, two
positioned vertically and two horizontally in order to excite the principal global bending
and torsional modes (see Figure 6). By using triaxial accelerometers positioned at 117 points
distributed across the car body, a total of 1404 FRFs were measured over a range of
0}200 Hz.

The bandwidth for analysis was selected to be 15}200 Hz, which was divided into nine
approximately equal sub-intervals. By applying the GST to each sub-interval a total of



Figure 5. Cumulative transmissibility (*) and true error "tting related to GST (} ) }) and to RFP (} }).

Figure 6. Shaker's locations on the car body.
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39 poles were determined, so that, as the "nal step, it was possible to re"t in the entire
interval all the FRFs by using a common least-squares frequency domain (LSFD) method
[14] to estimate just residues of the partial fraction description [2].

Figures 7}10 illustrate FRFs corresponding to a response point close to actuator no.
1 (called AS01) in the vertical direction and each of the four excitations respectively. As can
be observed, GST provides a very accurate estimate for natural frequencies and damping
ratios, with a close curve-"t being obtained by using LSFD even around the antiresonances
where other techniques commonly provide poor results.

To indicate the potential of the GST with respect to other curve"tting methods, the
so-called frequency domain direct parameter identi"cation (FDDPI), available in the
software package LMS-CadaX [16] and often used for examples of this type, was applied in



Figure 7. Fitting for FRF between point AS01 direction Z and shaker no. 1, (} } GST, * experimental data).

Figure 8. Fitting for FRF between point AS01 direction Z and shaker no. 2, (} } GST, * experimental data).
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Figure 9. Fitting for FRF between point AS01 direction Z and shaker no. 3, (} } GST, * experimental data).

Figure 10. Fitting for FRF between point AS01 direction Z and shaker no. 4, (} } GST, * experimental data).

54 R. RUOTOLO AND D. M. STORER



Figure 11. Stabilization diagram obtained with the FDDPI method.
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the same sub-intervals chosen for GST. A typical stabilization diagram resulting from the
application of this technique in the interval from 48)5 to 80 Hz is shown in Figure 11
although this does not provide any clear indication for selecting the true system poles.
Whereas the GST yielded 5 poles, the FDDPI does not provide any reliable estimate for
natural frequencies and damping ratios which remain stable even if the dimension of the
problem to be solved is increased, a fact which serves to demonstrate the di$culty
associated with conventional routines for curve"tting FRFs measured from a system with
high modal coupling such as a trimmed car body.

4. CONCLUSIONS

This article has described a method called global smoothing technique (GST) which has
been developed in order to determine the poles of structural systems for measured FRFs
even when the system exhibits complex dynamic behaviour due to high modal coupling,
traditionally di$cult to analyze with conventional, commonly available curve-"tting
routines.

Two examples of interest in the automotive industry have been studied to demonstrate
the potential advantages of the GST with respect to other more conventional modal
analysis methods, namely the identi"cation of the rigid-body modes of a car engine from
data measured on a road-simulated test facility, and the modal analysis of FRF data from
a fully trimmed car body.

Being beyond the scope of this study, a complete comparative analysis with other more
conventional modal analysis techniques will be the subject of future research. Nevertheless,
the relatively high quality of the results obtained by using the GST in the case studies serves
to demonstrate the potential of the method developed, particularly with regard to the more
challenging and di$cult-to-analyze structural systems, often relevant in di!erent sectors of
engineering.
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